Course/module description

Course provider	Osh Technological University named after M. Adyshev
(institution)	(OshTU)
Course title	Spatial Analysis
Target group	PhD Students (Cartography and Geoinformation)
Туре	Elective course
(compulsory/optional):	
Number of ECTS	5 ECTS (150 academic hours)
credits allocated (if	
applicable); estimated	
workload	
Mode of delivery (face-	45 hours (face-to-face hours)
to-face/ distance	
learning etc.); number	
of contact hours	
Language of instruction	Kyrgyz/Russian/ English
Prerequisites and co-	Geographic Information Systems (GIS), Informatics and some
requisites (if applicable)	programming experience in any language.
Course aims:	In this course, students will learn about spatial analysis, which
	includes any formal methods for studying objects using their
	topological, geometric, or geographic properties.
	Here we will study the main methods of spatial analysis used in
	scientific disciplines; through the social, physical and
	biological sciences.
	The course is designed so that students develop an
	understanding of the quantitative analysis of spatial data,
	including methods of pattern analysis, classification, and spatial
• • •	modeling in a GIS environment.
Learning outcomes:	On completion of this course, students should be able to:
	- understand the basic and advanced methods of analysis and
	spatial modeling using GIS and the consequences of their
	application in various fields of science and practice;
	- select and apply appropriate methods of data acquisition,
Competences	analysis and visualization to solve research problems.
Course content:	- The sullabus will cover topics from:
Course content.	aughtitative and qualitative spatial analysis: advanced
	- qualitative and qualitative spatial analysis, advanced
	- surface modeling
	- cost analysis
	- network modeling
	- cellular automata
	- location and allocation analysis.
	- spatial modelling of natural and anthropogenic
	processes,
	- problems with the use of GIS in spatial modeling.
	- examples in the field of: landscape structure analysis.
	land surface modelling, population modelling,
	hydrological modelling, transport accessibility, land
	cover changes and land use.

Recommended or	1. Lecture Materials
required reading and	2. Software: ArcGIS Desktop, ArcPro, R, online mapping
other learning	tools (e.g. GoogleMaps, ArcGIS online)
resources/tools:	3. Recommended Books:
	1. An introduction to Spatial Data Analysis, Advanced
	Remote Sensing. http://book.ecosens.org/gsbook/
	2. Fundamentals of Spatial Analysis and Modelling, Jay Gao
	ISBN 9781032115757, Published December 22, 2021 by
	CRC Press, 368 Pages
Planned learning	1. Regular lectures;
activities and teaching	2. Practical methods – laboratories
methods:	3. Practical methods – project method
	4. Problem-solving methods – discussions in class
Assessment methods	1. Mid-term exam (25%)
and criteria:	2. Labs and computing tasks (25%)
	3. Class discussion/participation (10%)
	4. Final exam 40%
Additional information:	Course instructor – Gulzara Mamazhakypova
	Contacts: gulzara.mamazhakypova@mail.com, mob.tel.: +996-777-797070