Physical Principles of Remote Sensing

GeoTAK

CBHE PROJECT: 617695-EPP-1-2020-1-ES-EPPKA2-CBHE-JP "Developing Interdisciplinary Postgraduate Programmes and Strengthening Research Networks in Geoinformation Technologies in Armenia and Kyrgyzstan" Zhumakadyr Matisakov

Osh Technological University

Co-funded by the Erasmus+ Programme of the European Union

What is Remote Sensing?

Remote Sensing is an art and science of obtaining information about an object or feature without physically coming in contact with that object or feature (Lillesand and Kiefer, 1987)

RS is an art, science, and technology of obtaining reliable information about physical object and the environment, through the process of recording, measuring and interpreting imagery and digital representations of energy patterns derived from noncontact sensor system (Colwell, 1977)

Components of Remote Sensing

Type of Radiation	Frequency Range (Hz)	Wavelength Range
Gamma-rays	10 ²⁰ - 10 ²⁴	< 10 ⁻¹² m
X-rays	10 ¹⁷ – 10 ²⁰	1 nm – 1 pm
Ultraviolet	10 ¹⁵ – 10 ¹⁷	400 nm – 1 nm
Visible	4 x 10 ¹⁴ - 7.5 x 10 ¹⁴	750 nm – 400 nm
Near-infrared	$1 \times 10^{14} - 4 \times 10^{14}$	2.5 µm – 750 nm
Infrared	10 ¹³ – 10 ¹⁴	25 μm – 2.5 μm
Microwaves	3 x 10 ¹¹ - 10 ¹³	1 mm – 25 µm
Radio waves	< 3 x 10 ¹¹	>1mm

Electromagnetic Waves in the Electromagnetic Spectrum

Event – Location, day, Month, year

The electromagnetic spectrum

Formulas for the Electromagnetic Radiation

$$f = rac{c}{\lambda}$$
, or $f = rac{E}{h}$, or $E = rac{hc}{\lambda}$,

Where,

- c = 299792458 m/s is the speed of light in a vacuum
- $h = 6.62607015 \times 10^{-34}$ J·s is Planck's constant.

Active Remote Sensing

Source: Instrument pulse, Needs power to operate

Passive Remote Sensing

Sources: surface emission, cosmic background, rain emission

Illustration of examples with passive and active methods in remote sensing

Underwater exploration, bathymetry

Instrument / platform	Propagation	Interaction	Signatures
	(wavelength range)		
Optical camera /	Clear water, shallow	Scattering of sunlight	Reflectance spectra,
ship, diver	depth (λ ≅ 0.4-1 μm)		contours.
Sonar / ship,	Deep penetration of	Backscattering of	Depends on object
submarine	sound waves	sound waves from	Usually easy to
		bottom surface, from	locate depth to
		animals, ships, etc.	ocean-bottom

Speed of sound (m/s) in pure water and in sea water at P=0.1 MPa (sea surface) and at 100 MPa (10 km depth)

Temperature (C)	Pure water	Sea water S=3.5%
	(surface, 10 km)	(surface, 10 km)
0	1402, 1578	1449, 1623
10	1447, 1618	1490, 1659
20	1483, 1650	1522, 1687
30	1511, 1677	1546, 1710

Detection of snow cover (regional, global)

Instrument / platform	Propagation (wavelength range)	Interaction	Signatures
Optical camera / tower, aircraft, satellite	Through clear air, (λ ≅ 0.4-1 μm)	Scattering of sunlight	High reflectance, especially for fresh snow.
Thermal IR imager / satellite	Clear air (λ ≅ 8-14 μm)	Emission of thermal radiation	T ≤ 273.15 K
Microwave radiometer / satellite	Clear air, clouds (λ ≅ 3 mm – 10 cm)	Scattering of sky radiation and emission of thermal radiation	Dry snow with characteristic reflectance, wet snow with high emissivity
Microwave radar / satellite	Clear air, clouds, precipitation $(\lambda \cong 3 \text{ cm} - 10 \text{ cm})$	Backscattering of microwave radiation	Low backscatter, especially for wet snow
Gamma-ray detector (scintillation counter) / low-flying aircraft	Short range < 300 m in air (λ < 10 ⁻¹⁰ m)	Natural γ radiation of minerals (e.g. ⁴⁰ K, ²³⁸ U, ²⁰⁸ TI) in the top 10 cm of the soil	Attenuation by snow

Measurement of atmospheric water vapour H₂O

		1	1
Instrument / platform	Propagation	Interaction	Signatures
	(speed)		
GPS system with	All weather	Delay of signal	Unique for total column
network of fixed	(very close to	speed by water	of H ₂ O if surface air
receivers / surface and satellites	speed of light in vacuum)	vapour and dry air	pressure is known
Microwave radiometer / surface	Air, smoke, clouds	Emission line of H ₂ O frequency f≅22 GHz	Distinction from cloud emission by 2 nd
		(λ≅14 mm)	frequency
Microwave	Air, smoke, clouds	Emission line of H ₂ O	Distinction from surface
radiometer / satellite		frequency f≅22 GHz	and clouds by additional
		(λ≅14 mm)	channels (frequency,
			polarisation)
Sun photometer /	Clear air with	Absorption band of	Distinction from aerosols
surface	sunlight	H ₂ O (λ ≅ 940 nm)	by additional channels
MERIS / satellite	Clear air with	Absorption band of	Distinction from surface
(ENVISAT)	sunlight	H ₂ O (λ ≅ 940 nm)	and aerosols by
			additional channels

Detection and localization of lightning

Instrument	Propagation (speed)	Interaction	Signatures
Human observer	Viewing lightning (speed of light), Hearing thunder (sound speed)	Light flash and sound burst emitted by lightning	Characteristic flash in view direction, delay of thunder proportional to distance
Electromagnetic lightning detector network	All-weather capability (ground-wave close to speed of light)	Radio burst (sferic) emitted by lightning	Propagation distance from time-of-arrival measured at several stations.

Antennas types

Basic idea of a radiometer to measure the radiation

Thanks!

Zhumakadyr Matisakov Osh Technological University mzhkka@gmail.com

CBHE PROJECT: 617695-EPP-1-2020-1-ES-EPPKA2-CBHE-JP "Developing Interdisciplinary Postgraduate Programmes and Strengthening Research Networks in Geoinformation Technologies in Armenia and Kyrgyzstan"

GeoTAK

Co-funded by the Erasmus+ Programme of the European Union

